Analysis of Performance Improvements and Bias Associated with the Use of Human Mobility Data in COVID-19 Case Prediction Models

Author:

Abrar Saad Mohammad1ORCID,Awasthi Naman1ORCID,Smolyak Daniel1ORCID,Frias-Martinez Vanessa1ORCID

Affiliation:

1. University of Maryland, College Park, USA

Abstract

The COVID-19 pandemic has mainstreamed human mobility data into the public domain, with research focused on understanding the impact of mobility reduction policies as well as on regional COVID-19 case prediction models. Nevertheless, current research on COVID-19 case prediction tends to focus on performance improvements, masking relevant insights about when mobility data does not help, and more importantly, why, so that it can adequately inform local decision making. In this article, we carry out a systematic analysis to reveal the conditions under which human mobility data provides (or not) an enhancement over individual regional COVID-19 case prediction models that do not use mobility as a source of information. Our analysis—focused on U.S. county-based COVID-19 case prediction models—shows that (1) at most, 60% of counties improve their performance after adding mobility data; (2) the performance improvements are modest, with median correlation improvements of approximately 0.13; (3) improvements were lower for counties with higher Black, Hispanic, and other non-White populations as well as low-income and rural populations, pointing to potential bias in the mobility data negatively impacting predictive performance; and (4) different mobility datasets, predictive models, and training approaches bring about diverse performance improvements.

Publisher

Association for Computing Machinery (ACM)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3