Empirical evaluation of hash functions for multipoint measurements

Author:

Henke Christian1,Schmoll Carsten1,Zseby Tanja1

Affiliation:

1. Fraunhofer Institute FOKUS, Berlin, Germany

Abstract

A broad spectrum of network measurement applications demand passive multipoint measurements in which data from multiple observation points has to be correlated. Examples are the passive measurement of one-way delay or the observation of the path that a packet takes through a network. Nevertheless, due to high data rates and the need for fine granular measurements, the resource consumption for passive measurements can be immense. Furthermore, the resource consumption depends on the traffic in the network, which usually is highly dynamic. Packet and flow-selection methods provide a solution to reduce and control the resource consumption for passive measurements. In order to apply such techniques to multipoint measurements the selection processes need to be synchronized. Hash-based selection is a deterministic packet selection based on a hash function computed on selected parts of the packet content. This selection decision is consistent throughout the network and enables packet tracing and the measurement of delay between network nodes. Because the selection is based on deterministic function it can introduce bias which leads to wrong estimation of traffic characteristics. In this paper we define a set of quality criteria and select methods to investigate which hash function is most suitable for hash-based packet selection. We analyze 23 non-cryptographic and 2 cryptographic hash functions. Experiments are performed with real traffic traces from different networks. Based on the results we recommend 2 fast hash functions which show low bias and sample a representative subset of the population.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

Reference34 articles.

1. The Nature of the Beast: Recent Traffic Measurements from an Internet Backbone Geneva Switzerland July 1998. The Nature of the Beast: Recent Traffic Measurements from an Internet Backbone Geneva Switzerland July 1998.

2. MOME traffic measurement database. http://www.ist-mome.org/ March 2007. MOME traffic measurement database. http://www.ist-mome.org/ March 2007.

3. K. Bosch. Statistik Taschenbuch. R.Oldenbourg Verlag 1998. K. Bosch. Statistik Taschenbuch. R.Oldenbourg Verlag 1998.

4. The strict avalanche criterion randomness test

5. Practical delay monitoring for ISPs

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3