Conductive Fiducial Tangibles for Everyone

Author:

Steuerlein Benedict1,Mayer Sven2

Affiliation:

1. University of Stuttgart, Stuttgart, Germany

2. LMU Munich, Munich, Germany

Abstract

While tangibles enrich the interaction with touchscreens, with projected capacitive screens being mainstream, the recognition possibilities of tangibles are nearly lost. Deep learning approaches to improve the recognition of conductive triangles require collecting huge amounts of data and domain-specific knowledge for hyperparameter tuning. To overcome this drawback, we present a toolkit that allows everyone to train a deep learning tangible recognizer based on simulated data. Our toolkit uses a pre-trained Generative Adversarial Network to simulate the imprint of fiducial tangibles, which we then use to train a deployable recognizer based on our pre-defined neuronal network architecture. Our evaluation shows that our approach can recognize fiducial tangibles such as AprilTags with an average accuracy of 99.3% and an average rotation error of only 4.9°. Thus, our toolkit is a plug-and-play solution requiring no domain knowledge and no data collection but allows designers to use deep learning approaches in their design process.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Human-Computer Interaction,Social Sciences (miscellaneous)

Reference72 articles.

1. Martin Arjovsky , Soumith Chintala , and Léon Bottou . 2017 . Wasserstein Generative Adversarial Networks . In Proceedings of the 34th International Conference on Machine Learning - Volume 70 (Sydney, NSW, Australia) (ICML'17). JMLR.org, 214--223. arxiv: 1701.07875 [stat.ML] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein Generative Adversarial Networks. In Proceedings of the 34th International Conference on Machine Learning - Volume 70 (Sydney, NSW, Australia) (ICML'17). JMLR.org, 214--223. arxiv: 1701.07875 [stat.ML]

2. This Dataset Does Not Exist: Training Models from Generated Images

3. CapStones and ZebraWidgets

4. 3D Hand Pose Estimation on Conventional Capacitive Touchscreens

5. Tangible 3D tabletops

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ProtoBricks: A Research Toolkit for Tangible Prototyping & Data Physicalization;Designing Interactive Systems Conference;2024-07

2. Deep Learning Super-Resolution Network Facilitating Fiducial Tangibles on Capacitive Touchscreens;Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems;2023-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3