Multi-bit Data Flow Error Detection Method Based on SDC Vulnerability Analysis

Author:

Yan Zujia1ORCID,Zhuang Yi1ORCID,Zheng Weining2ORCID,Gu Jingjing1ORCID

Affiliation:

1. Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China

2. Harbin Institute of Technology, Harbin, Heilongjiang, China

Abstract

One of the most difficult data flow errors to detect caused by single-event upsets in space radiation is the Silent Data Corruption (SDC). To solve the problem of multi-bit upsets causing program SDC, an instruction multi-bit SDC vulnerability prediction model based on one-class support vector machine classification is built using SDC vulnerability analysis, which has more accurate vulnerability instruction identification capabilities. By hardening the program with selective instruction redundancy, we propose a multi-bit data flow error detection method for detecting SDC error (SDCVA-OCSVM), aiming to protect the data in the memory or register used by the program. We have also verified the effectiveness of the method through comparative experiments. The method has been verified to have a higher error detection rate and lower code size and time overhead.

Funder

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference35 articles.

1. M. A. Abazari, M. Fazeli, A. Patooghy, and S. G. Miremadi. 2012. An efficient technique to tolerate MBU faults in register file of embedded processors. In Proceedings of the 16th CSI International Symposium on Computer Architecture and Digital Systems (CADS’12). IEEE, 115–120.

2. MiniMIPS

3. Wukong: Explorer of dark matter particles;Chang Jin;KEXUE,2018

4. Athanasios Chatzidimitriou, George Papadimitriou, Christos Gavanas, George Katsoridas, and Dimitris Gizopoulos. 2019. Multi-bit upsets vulnerability analysis of modern microprocessors. In Proceedings of the IEEE International Symposium on Workload Characterization (IISWC’19). IEEE, 119–130.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3