Named Entity Recognition for Biomedical Patent Text using Bi-LSTM Variants
Author:
Affiliation:
1. FIZ karlsruhe - Leibniz Institute For Information Infrastructure, Eggenstein-Leopoldshafen, Baden Württemberg
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3366030.3366104
Reference17 articles.
1. Saber A Akhondi Hinnerk Rey Markus Schwörer Michael Maier John Toomey Heike Nau Gabriele Ilchmann Mark Sheehan Matthias Irmer Claudia Bobach Marius Doornenbal Michelle Gregory and Jan A Kors. 2019. Automatic identification of relevant chemical compounds from patents. Database 2019 (01 2019). https://doi.org/10.1093/database/baz001 Saber A Akhondi Hinnerk Rey Markus Schwörer Michael Maier John Toomey Heike Nau Gabriele Ilchmann Mark Sheehan Matthias Irmer Claudia Bobach Marius Doornenbal Michelle Gregory and Jan A Kors. 2019. Automatic identification of relevant chemical compounds from patents. Database 2019 (01 2019). https://doi.org/10.1093/database/baz001
2. Marco Basaldella Lenz Furrer Carlo Tasso and Fabio Rinaldi. 2017. Entity recognition in the biomedical domain using a hybrid approach. Journal of Biomedical Semantics 8 (11 2017). https://doi.org/10.1186/s13326-017-0157-6 Marco Basaldella Lenz Furrer Carlo Tasso and Fabio Rinaldi. 2017. Entity recognition in the biomedical domain using a hybrid approach. Journal of Biomedical Semantics 8 (11 2017). https://doi.org/10.1186/s13326-017-0157-6
3. A unified architecture for natural language processing
4. Ronan Collobert Jason Weston Léon Bottou Michael Karlen Koray Kavukcuoglu and Pavel P. Kuksa. 2011. Natural Language Processing (almost) from Scratch. Computing Research Repository - CORR abs/1103.0398 (2011). http://arxiv.org/abs/1103.0398 Ronan Collobert Jason Weston Léon Bottou Michael Karlen Koray Kavukcuoglu and Pavel P. Kuksa. 2011. Natural Language Processing (almost) from Scratch. Computing Research Repository - CORR abs/1103.0398 (2011). http://arxiv.org/abs/1103.0398
5. Thanh Hai Dang Hoang-Quynh Le Trang M Nguyen and Sinh T Vu. 2018. D3NER: biomedical named entity recognition using CRF-biLSTM improved with fine-tuned embeddings of various linguistic information. Bioinformatics 34 20 (04 2018) 3539--3546. https://doi.org/10.1093/bioinformatics/bty356 Thanh Hai Dang Hoang-Quynh Le Trang M Nguyen and Sinh T Vu. 2018. D3NER: biomedical named entity recognition using CRF-biLSTM improved with fine-tuned embeddings of various linguistic information. Bioinformatics 34 20 (04 2018) 3539--3546. https://doi.org/10.1093/bioinformatics/bty356
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A survey on deep learning for patent analysis;World Patent Information;2021-06
2. Improving Named Entity Recognition for Biomedical and Patent Data Using Bi-LSTM Deep Neural Network Models;Natural Language Processing and Information Systems;2020
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3