Affiliation:
1. Microsoft Research, Redmond, WA
2. University of California, Riverside, CA
3. University of California, Irvine, CA
Abstract
Similarity search in large time series databases has attracted much research interest recently. It is a difficult problem because of the typically high dimensionality of the data. The most promising solutions involve performing dimensionality reduction on the data, then indexing the reduced data with a multidimensional index structure. Many dimensionality reduction techniques have been proposed, including Singular Value Decomposition (SVD), the Discrete Fourier transform (DFT), and the Discrete Wavelet Transform (DWT). In this article, we introduce a new dimensionality reduction technique, which we call Adaptive Piecewise Constant Approximation (APCA). While previous techniques (e.g., SVD, DFT and DWT) choose a common representation for all the items in the database that minimizes the global reconstruction error, APCA approximates each time series by a set of constant value segments of varying lengths such that their individual reconstruction errors are minimal. We show how APCA can be indexed using a multidimensional index structure. We propose two distance measures in the indexed space that exploit the high fidelity of APCA for fast searching: a lower bounding Euclidean distance approximation, and a non-lower-bounding, but very tight, Euclidean distance approximation, and show how they can support fast exact searching and even faster approximate searching on the same index structure. We theoretically and empirically compare APCA to all the other techniques and demonstrate its superiority.
Publisher
Association for Computing Machinery (ACM)
Reference52 articles.
1. Bay S. D. 2000. The UCI KDD Archive {http://kdd.ics.uci.edu}. Department of Information and Computer Science University of California Irvine Calif. Bay S. D. 2000. The UCI KDD Archive {http://kdd.ics.uci.edu}. Department of Information and Computer Science University of California Irvine Calif.
2. Density-based indexing for approximate nearest-neighbor queries
Cited by
228 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献