Abstract
Inductive Logic Programming (ILP) is a research area which investigates the construction of first-order definite clause theories from examples and background knowledge. ILP systems have been applied successfully in a number of real-world domains. These include the learning of structure-activity rules for drug design, finite-element mesh design rules, rules for primary-secondary prediction of protein structure and fault diagnosis rules for satellites. There is a well established tradition of learning-in-the-limit results in ILP. Recently some results within Valiant's PAC-learning framework have also been demonstrated for ILP systems. In this paper it is argued that algorithms can be directly
derived
from the formal specifications of ILP. This provides a common basis for Inverse Resolution, Explanation-Based Learning, Abduction and Relative Least General Generalisation. A new general-purpose, efficient approach to predicate invention is demonstrated. ILP is underconstrained by its logical specification. Therefore a brief overview of extra-logical constraints used in ILP systems is given. Some present limitations and research directions for the field are identified.
Publisher
Association for Computing Machinery (ACM)
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献