OCTET

Author:

Bond Michael D.1,Kulkarni Milind2,Cao Man1,Zhang Minjia1,Fathi Salmi Meisam1,Biswas Swarnendu1,Sengupta Aritra1,Huang Jipeng1

Affiliation:

1. Ohio State University, Columbus, OH, USA

2. Purdue University, West Lafayette, IN, USA

Abstract

Parallel programming is essential for reaping the benefits of parallel hardware, but it is notoriously difficult to develop and debug reliable, scalable software systems. One key challenge is that modern languages and systems provide poor support for ensuring concurrency correctness properties - atomicity, sequential consistency, and multithreaded determinism - because all existing approaches are impractical. Dynamic, software-based approaches slow programs by up to an order of magnitude because capturing and controlling cross-thread dependences (i.e., conflicting accesses to shared memory) requires synchronization at virtually every access to potentially shared memory. This paper introduces a new software-based concurrency control mechanism called OCTET that soundly captures cross-thread dependences and can be used to build dynamic analyses for concurrency correctness. OCTET achieves low overheads by tracking the locality state of each potentially shared object. Non-conflicting accesses conform to the locality state and require no synchronization; only conflicting accesses require a state change and heavyweight synchronization. This optimistic tradeoff leads to significant efficiency gains in capturing cross-thread dependences: a prototype implementation of OCTET in a high-performance Java virtual machine slows real-world concurrent programs by only 26% on average. A dependence recorder, suitable for record & replay, built on top of OCTET adds an additional 5% overhead on average. These results suggest that OCTET can provide a foundation for developing low-overhead analyses that check and enforce concurrency correctness.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Race Detection with O(1) Samples;Proceedings of the ACM on Programming Languages;2023-01-09

2. Fused Contextual Data With Threading Technology to Accelerate Processing in Home UbiHealth;International Journal of Software Science and Computational Intelligence;2022-01

3. 10 Years of research on debugging concurrent and multicore software: a systematic mapping study;Software Quality Journal;2016-01-21

4. Techniques and applications for guest-language safepoints;Proceedings of the 10th Workshop on Implementation, Compilation, Optimization of Object-Oriented Languages, Programs and Systems;2015-07-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3