Instant pickles

Author:

Miller Heather1,Haller Philipp2,Burmako Eugene1,Odersky Martin1

Affiliation:

1. EPFL, Lausanne, Switzerland

2. Typesafe, Inc., Lausanne, Switzerland

Abstract

As more applications migrate to the cloud, and as "big data" edges into even more production environments, the performance and simplicity of exchanging data between compute nodes/devices is increasing in importance. An issue central to distributed programming, yet often under-considered, is serialization or pickling, i.e. , persisting runtime objects by converting them into a binary or text representation. Pickler combinators are a popular approach from functional programming; their composability alleviates some of the tedium of writing pickling code by hand, but they don't translate well to object-oriented programming due to qualities like open class hierarchies and subtyping polymorphism. Furthermore, both functional pickler combinators and popular, Java-based serialization frameworks tend to be tied to a specific pickle format, leaving programmers with no choice of how their data is persisted. In this paper, we present object-oriented pickler combinators and a framework for generating them at compile-time, called scala/pickling , designed to be the default serialization mechanism of the Scala programming language. The static generation of OO picklers enables significant performance improvements, outperforming Java and Kryo in most of our benchmarks. In addition to high performance and the need for little to no boilerplate, our framework is extensible: using the type class pattern, users can provide both (1) custom, easily interchangeable pickle formats and (2) custom picklers, to override the default behavior of the pickling framework. In benchmarks, we compare scala/pickling with other popular industrial frameworks, and present results on time, memory usage, and size when pickling/unpickling a number of data types used in real-world, large-scale distributed applications and frameworks.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference38 articles.

1. AvroApache. Avro®. http://avro.apache.org. Accessed: 2013-08-11. AvroApache. Avro®. http://avro.apache.org. Accessed: 2013-08-11.

2. The Modula--3 type system

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cloud-based video analytics using convolutional neural networks;Software: Practice and Experience;2018-09-13

2. Foo;Proceedings of the 17th Workshop on Formal Techniques for Java-like Programs - FTfJP '15;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3