Affiliation:
1. University of Düsseldorf, Düsseldorf, Germany
2. King's College London, London, United Kingdom
Abstract
Dynamically typed language implementations often use more memory and execute slower than their statically typed cousins, in part because operations on collections of elements are unoptimised. This paper describes storage strategies, which dynamically optimise collections whose elements are instances of the same primitive type. We implement storage strategies in the PyPy virtual machine, giving a performance increase of 18% on wide-ranging benchmarks of real Python programs. We show that storage strategies are simple to implement, needing only 1500LoC in PyPy, and have applicability to a wide range of virtual machines.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design,Software
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献