CNN-Webshell

Author:

Tian Yifan1,Wang Jiabao1,Zhou Zhenji1,Zhou Shengli1

Affiliation:

1. Army Engineering University, HaifuStreat, Nanjing, China

Publisher

ACM Press

Reference17 articles.

1. Jinsuk Kim, Dong HoonYoo, Heejin Jang, and KimoonJeong. 2015. Webshark 1.0: a benchmark collection for malicious web shell detection. Journal of Information Processing Systems 11, 2 (2015), 229--238.

2. OleksiiStarov, Johannes Dahse, Syed Sharique Ahmad, Thorsten Holz, and Nick Nikiforakis. 2016. No honor among thieves: a large-scale analysis of malicious web shells. In International Conference on World Wide Web. 1021--1032.

3. Rung Ching Chen and Su Ping Chen. 2008. Intrusion detection using a hybrid support vector machine based on entropy and TF-IDF. International Journal of Innovative Computing Information & Control 4, 2 (2008), 413--424.

4. Armand Joulin, Edouard Grave, PiotrBojanowski, and Tomas Mikolov. 2016. Bag of tricks for effcient text classification. CoRR abs/1607.01759 (2016).

5. Sergio Pastrana, Carmen Torrano-Gimenez, Than Nguyen Hai, and Agustin Orfila. 2015. Anomalous web payload detection: evaluating the resilience of 1-grams based classifiers. Springer International Publishing. 195--200.

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PHP-based malicious webshell detection based on abstract syntax tree simplification and explicit duration recurrent networks;Computers & Security;2024-11

2. XShellGNN: Cross-file Web Shell Detection Based on Graph Neural Network;2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2024-05-08

3. AST-DF: A New Webshell Detection Method Based on Abstract Syntax Tree and Deep Forest;Electronics;2024-04-13

4. SWDNet: Stealth Web Shell Detection Technology based on Triplet Network;2023 19th International Conference on Mobility, Sensing and Networking (MSN);2023-12-14

5. Malicious webshell family dataset for webshell multi-classification research;Visual Informatics;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3