Taking a Studio Course in Distributed Software Engineering from a Large Local Cohort to a Small Global Cohort

Author:

Billingsley William1ORCID,Torbay Rosemary1,Fletcher Peter R.1,Thomas Richard N.2,Steel Jim R. H.2,Süß Jörn Guy2

Affiliation:

1. University of New England, Armidale, NSW, Australia

2. The University of Queensland, St Lucia, QLD, Australia

Abstract

One of the challenges of global software engineering courses is to bring the practices and experience of large geographically distributed teams into the local and time-limited environment of a classroom. Over the last 6 years, an on-campus studio course for software engineering has been developed at the University of Queensland (UQ) that places small teams of students on different features of a common product. This creates two layers of collaboration, as students work within their teams on individual features, and the teams must interoperate with many other teams on the common product. The class uses continuous integration practices and predominantly asynchronous communication channels (Slack and GitHub) to facilitate this collaboration. The original goal of this design was to ensure that students would authentically experience issues associated with realistically sized software projects, and learn to apply appropriate software engineering and collaboration practices to overcome them, in a course without significant extra staffing. Data from the development logs showed that most commits take place outside synchronous class hours, and the project operates as a temporally distributed team even though the students are geographically co-located. Since 2015, a course adapted from this format has also been taught at the University of New England (UNE), an Australian regional university that is also a longstanding provider of distance education. In this course, most students study online, and the class has to be able to work globally, because as well as students taking part from around Australia, there are also typically a small number of students taking part from overseas. Transferring the course to a smaller but predominantly online institution has allowed us to evaluate the distributed nature of the course, by considering what aspects of the course needed to change to support students who are geographically distributed, and comparing how the two cohorts behave. This has produced an overall course design, to teach professional distributed software engineering practices, that is adaptable from large classes to small, and from local to global.

Funder

Australian Government through the Office for Learning and Teaching

Publisher

Association for Computing Machinery (ACM)

Subject

Education,General Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Team-based learning in large cohorts: Successes and challenges in first year mechanical engineering;International Journal of Mechanical Engineering Education;2024-06-05

2. Diverging assessments: What, Why, and Experiences;Proceedings of the 55th ACM Technical Symposium on Computer Science Education V. 1;2024-03-07

3. An Exploratory Study to Assess the Usability of a Groupware with Multi-Agent Systems;2023 IEEE Frontiers in Education Conference (FIE);2023-10-18

4. Teaching strategies of distance teaching applied in design discipline;Interactive Learning Environments;2023-08-15

5. Counteracting sociocultural barriers in global software engineering using group activities;Journal of Software: Evolution and Process;2023-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3