Performance Study of Object Tracking with Multiple Kalman Filters in Autonomous Driving Systems

Author:

Medaglini Alessio1,Bartolini Sandro1

Affiliation:

1. University of Siena, Siena, Italy

Abstract

Object tracking is an important and central aspect of autonomous driving, as it underlies the obstacle detection and avoidance systems of any type of autonomous vehicles. A widely used method for tracking is based on Kalman filters, both for linear and non-linear cases, with different computational burden. Unfortunately, object tracking algorithms are computationally intensive, and they may not easily meet the efficiency and responsiveness requirements of real-time applications such as autonomous driving. This issue motivates ad-hoc investigations to speed up the computation and make Kalman filtering available even within limited computational power. This paper carry out a performance evaluation of a Kalman filter based object tracking system taken from a real tramway use-case, and aims at improving its performance efficiency by leveraging parallelization. In particular, this work analyzes the possibilities of execution parallelization on multi-core processors, proposing a target-specific optimization approach and comparing the obtained results, then summing them in general lessons learned. Our technique achieves up to 80% reduction of single frame processing time in the most crowded cases.

Publisher

Association for Computing Machinery (ACM)

Reference7 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3