Affiliation:
1. Nanjing University, Nanjing, China
2. University of Queensland, QLD, Australia
3. University of Queensland, Soochow University, China
Abstract
Semantic tags of points of interest (POIs) are a crucial prerequisite for location search, recommendation services, and data cleaning. However, most POIs in location-based social networks (LBSNs) are either tag-missing or tag-incomplete. This article aims to develop semantic annotation techniques to automatically infer tags for POIs. We first analyze two LBSN datasets and observe that there are two types of tags, category-related ones and sentimental ones, which have unique characteristics. Category-related tags are hierarchical, whereas sentimental ones are category-aware. All existing related work has adopted classification methods to predict high-level category-related tags in the hierarchy, but they cannot apply to infer either low-level category tags or sentimental ones.
In light of this, we propose a latent-class probabilistic generative model, namely the spatial-temporal topic model (STM), to infer personal interests, the temporal and spatial patterns of topics/semantics embedded in users’ check-in activities, the interdependence between category-topic and sentiment-topic, and the correlation between sentimental tags and rating scores from users’ check-in and rating behaviors. Then, this learned knowledge is utilized to automatically annotate all POIs with both category-related and sentimental tags in a unified way. We conduct extensive experiments to evaluate the performance of the proposed STM on a real large-scale dataset. The experimental results show the superiority of our proposed STM, and we also observe that the real challenge of inferring category-related tags for POIs lies in the low-level ones of the hierarchy and that the challenge of predicting sentimental tags are those with neutral ratings.
Funder
Natural Science Foundation of China
Australian Research Council
Natural Science Foundation of Jiangsu Province, China
National Basic Research Program of China
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Theoretical Computer Science
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献