Global Dead-Block Management for Task-Parallel Programs

Author:

Manivannan Madhavan1ORCID,Pericás Miquel1,Papaefstathiou Vassilis1,Stenström Per1

Affiliation:

1. Chalmers University of Technology, Sweden

Abstract

Task-parallel programs inefficiently utilize the cache hierarchy due to the presence of dead blocks in caches. Dead blocks may occupy cache space in multiple cache levels for a long time without providing any utility until they are finally evicted. Existing dead-block prediction schemes take decisions locally for each cache level and do not efficiently manage the entire cache hierarchy. This article introduces runtime-orchestrated global dead-block management , in which static and dynamic information about tasks available to the runtime system is used to effectively detect and manage dead blocks across the cache hierarchy. In the proposed global management schemes, static information (e.g., when tasks start/finish, and what data regions tasks produce/consume) is combined with dynamic information to detect when/where blocks become dead. When memory regions are deemed dead at some cache level(s), all the associated cache blocks are evicted from the corresponding level(s). We extend the cache controllers at both private and shared cache levels to use the aforementioned information to evict dead blocks. The article does an extensive evaluation of both inclusive and non-inclusive cache hierarchies and shows that the proposed global schemes outperform existing local dead-block management schemes.

Funder

European Research Council

MECCA project

Swedish National Infrastructure for Computing

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3