Edge Learning

Author:

Zhang Jie1,Qu Zhihao2,Chen Chenxi3,Wang Haozhao4,Zhan Yufeng1,Ye Baoliu3,Guo Song1

Affiliation:

1. The Hong Kong Polytechnic University, China

2. Hohai University, The Hong Kong Polytechnic University, China

3. Nanjing University, China

4. Huazhong University of Science and Technology, The Hong Kong Polytechnic University, China

Abstract

Machine Learning ( ML ) has demonstrated great promise in various fields, e.g., self-driving, smart city, which are fundamentally altering the way individuals and organizations live, work, and interact. Traditional centralized learning frameworks require uploading all training data from different sources to a remote data server, which incurs significant communication overhead, service latency, and privacy issues. To further extend the frontiers of the learning paradigm, a new learning concept, namely, Edge Learning ( EL ) is emerging. It is complementary to the cloud-based methods for big data analytics by enabling distributed edge nodes to cooperatively training models and conduct inferences with their locally cached data. To explore the new characteristics and potential prospects of EL, we conduct a comprehensive survey of the recent research efforts on EL. Specifically, we first introduce the background and motivation. We then discuss the challenging issues in EL from the aspects of data, computation, and communication. Furthermore, we provide an overview of the enabling technologies for EL, including model training, inference, security guarantee, privacy protection, and incentive mechanism. Finally, we discuss future research opportunities on EL. We believe that this survey will provide a comprehensive overview of EL and stimulate fruitful future research in this field.

Funder

National Key Research and Development Program of China

Hong Kong RGC Research Impact Fund

Shenzhen Science and Technology Innovation Commission

Collaborative Innovation Center of Novel Software Technology and Industrialization

Hong Kong RGC General Research Fund

Fundamental Research Funds for the Central Universities

RCN-Diku INTPART BDEM

National Natural Science Foundation of China

Hong Kong RGC Collaborative Research Fund

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3