Latent semantic models for collaborative filtering

Author:

Hofmann Thomas1

Affiliation:

1. Brown University, Providence, RI

Abstract

Collaborative filtering aims at learning predictive models of user preferences, interests or behavior from community data, that is, a database of available user preferences. In this article, we describe a new family of model-based algorithms designed for this task. These algorithms rely on a statistical modelling technique that introduces latent class variables in a mixture model setting to discover user communities and prototypical interest profiles. We investigate several variations to deal with discrete and continuous response variables as well as with different objective functions. The main advantages of this technique over standard memory-based methods are higher accuracy, constant time prediction, and an explicit and compact model representation. The latter can also be used to mine for user communitites. The experimental evaluation shows that substantial improvements in accucracy over existing methods and published results can be obtained.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Reference27 articles.

1. Blei D. M. Ng A. Y. and Jordan M. I. 2002. Latent dirichlet allocation. In Advances in Neural Information Processing Systems. MIT Press Cambridge Mass.]] Blei D. M. Ng A. Y. and Jordan M. I. 2002. Latent dirichlet allocation. In Advances in Neural Information Processing Systems. MIT Press Cambridge Mass.]]

Cited by 780 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3