Cyclic proofs, system t, and the power of contraction

Author:

Kuperberg Denis1ORCID,Pinault Laureline1,Pous Damien1ORCID

Affiliation:

1. University of Lyon, France / CNRS, France / ENS Lyon, France / Claude Bernard University Lyon 1, France / LIP, France

Abstract

We study a cyclic proof system C over regular expression types, inspired by linear logic and non-wellfounded proof theory. Proofs in C can be seen as strongly typed goto programs. We show that they denote computable total functions and we analyse the relative strength of C and Gödel’s system T. In the general case, we prove that the two systems capture the same functions on natural numbers. In the affine case, i.e., when contraction is removed, we prove that they capture precisely the primitive recursive functions—providing an alternative and more general proof of a result by Dal Lago, about an affine version of system T. Without contraction, we manage to give a direct and uniform encoding of C into T, by analysing cycles and translating them into explicit recursions. Whether such a direct and uniform translation from C to T can be given in the presence of contraction remains open. We obtain the two upper bounds on the expressivity of C using a different technique: we formalise weak normalisation of a small step reduction semantics in subsystems of second-order arithmetic: ACA 0 and RCA 0 .

Funder

European Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Folding interpretations;2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS);2023-06-26

2. Computational expressivity of (circular) proofs with fixed points;2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS);2023-06-26

3. A Linear Perspective on Cut-Elimination for Non-wellfounded Sequent Calculi with Least and Greatest Fixed-Points;Lecture Notes in Computer Science;2023

4. Cyclic Implicit Complexity;Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science;2022-08-02

5. CycleQ: an efficient basis for cyclic equational reasoning;Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation;2022-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3