Optimizing Sparse Matrix—Matrix Multiplication for the GPU

Author:

Dalton Steven1,Olson Luke1,Bell Nathan2

Affiliation:

1. University of Illinois at Urbana--Champaign, Urbana, IL

2. Google, Mountain View, CA

Abstract

Sparse matrix--matrix multiplication (SpGEMM) is a key operation in numerous areas from information to the physical sciences. Implementing SpGEMM efficiently on throughput-oriented processors, such as the graphics processing unit (GPU), requires the programmer to expose substantial fine-grained parallelism while conserving the limited off-chip memory bandwidth. Balancing these concerns, we decompose the SpGEMM operation into three highly parallel phases: expansion, sorting, and contraction, and introduce a set of complementary bandwidth-saving performance optimizations. Our implementation is fully general and our optimization strategy adaptively processes the SpGEMM workload row-wise to substantially improve performance by decreasing the work complexity and utilizing the memory hierarchy more effectively.

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CAMLB-SpMV: An Efficient Cache-Aware Memory Load-Balancing SpMV on CPU;Proceedings of the 53rd International Conference on Parallel Processing;2024-08-12

2. Compilation of Modular and General Sparse Workspaces;Proceedings of the ACM on Programming Languages;2024-06-20

3. Optimizing sparse general matrix–matrix multiplication for DCUs;The Journal of Supercomputing;2024-05-30

4. On Efficient Large Sparse Matrix Chain Multiplication;Proceedings of the ACM on Management of Data;2024-05-29

5. A Survey of Accelerating Parallel Sparse Linear Algebra;ACM Computing Surveys;2023-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3