Survey on Privacy-Preserving Techniques for Microdata Publication

Author:

Carvalho Tânia1ORCID,Moniz Nuno2ORCID,Faria Pedro3ORCID,Antunes Luís1ORCID

Affiliation:

1. University of Porto

2. INESC TEC/University of Porto

3. TekPrivacy

Abstract

The exponential growth of collected, processed, and shared microdata has given rise to concerns about individuals’ privacy. As a result, laws and regulations have emerged to control what organisations do with microdata and how they protect it. Statistical Disclosure Control seeks to reduce the risk of confidential information disclosure by de-identifying them. Such de-identification is guaranteed through privacy-preserving techniques (PPTs). However, de-identified data usually results in loss of information, with a possible impact on data analysis precision and model predictive performance. The main goal is to protect the individual’s privacy while maintaining the interpretability of the data (i.e., its usefulness). Statistical Disclosure Control is an area that is expanding and needs to be explored since there is still no solution that guarantees optimal privacy and utility. This survey focuses on all steps of the de-identification process. We present existing PPTs used in microdata de-identification, privacy measures suitable for several disclosure types, and information loss and predictive performance measures. In this survey, we discuss the main challenges raised by privacy constraints, describe the main approaches to handle these obstacles, review the taxonomies of PPTs, provide a theoretical analysis of existing comparative studies, and raise multiple open issues.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference257 articles.

1. Security-control methods for statistical databases: A comparative study;Adam Nabil R.;ACM Computing Surveys,1989

2. Aircloak GmbH. 2021. Aircloak. Retrieved November 1 2021 from https://aircloak.com/.

3. An efficient approach for publishing microdata for multiple sensitive attributes;Anjum Adeel;Journal of Supercomputing,2018

4. Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein generative adversarial networks. In Proceedings of the International Conference on Machine Learning. 214–223.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3