Graph Convolutional Network-based Model for Incident-related Congestion Prediction: A Case Study of Shanghai Expressways

Author:

Wang Xi1ORCID,Chai Yibo1,Li Hui1,Wang Wenbin2,Sun Weishan3

Affiliation:

1. School of Information, Central University of Finance and Economics, Beijing, P.R.China

2. College of Business, Shanghai University of Finance and Economics, Shanghai, P.R.China

3. Shanghai Municipal Traffic Command Center, Shanghai, P.R.China

Abstract

Traffic congestion has become a significant obstacle to the development of mega cities in China. Although local governments have used many resources in constructing road infrastructure, it is still insufficient for the increasing traffic demands. As a first step toward optimizing real-time traffic control, this study uses Shanghai Expressways as a case study to predict incident-related congestions. Our study proposes a graph convolutional network-based model to identify correlations in multi-dimensional sensor-detected data, while simultaneously taking into account environmental, spatiotemporal, and network features in predicting traffic conditions immediately after a traffic incident. The average accuracy, average AUC, and average F-1 score of the predictive model are 92.78%, 95.98%, and 88.78%, respectively, on small-scale ground-truth data. Furthermore, we improve the predictive model’s performance using semi-supervised learning by including more unlabeled data instances. As a result, the accuracy, AUC, and F-1 score of the model increase by 2.69%, 1.25%, and 4.72%, respectively. The findings of this article have important implications that can be used to improve the management and development of Expressways in Shanghai, as well as other metropolitan areas in China.

Funder

Program for Innovation Research in Central University of Finance and Economics

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Management Information Systems

Reference69 articles.

1. China mobile source environmental management annual report (2019) released;China Energy;Energy China,2019

2. Intelligent Transportation Systems – Problems and Perspectives

3. Short-term traffic flow prediction based on echo state networks;Fulton J.;Adv. Inf. Sci. Serv. Sci.,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cost of travel delays caused by traffic crashes;Communications in Transportation Research;2024-12

2. A Practical Exploration of Constructive English Learning Platform Informatization Based on RBF Algorithm;Mathematical Problems in Engineering;2021-11-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3