Compact and progressive plant models for streaming in networked virtual environments

Author:

Mondet Sebastien1,Cheng Wei2,Morin Geraldine1,Grigoras Romulus1,Boudon Frederic3,Ooi Wei Tsang2

Affiliation:

1. University of Toulouse, France

2. National University of Singapore

3. CIRAD, France

Abstract

Just as in the real world, plants are important objects in virtual worlds for creating pleasant and realistic environments, especially those involving natural scenes. As such, much effort has been made in realistic modeling of plants. As the trend moves towards networked and distributed virtual environments, however, the current models are inadequate as they are not designed for progressive transmissions. In this article, we fill in this gap by proposing a progressive representation for plants based on generalized cylinders. We model the shape and thickness of branches in a plant as Bézier curves, group the curves according to the similarity, and differentially code the curves to represent the plant in a compact and progressive manner. To facilitate the transmission of the plants, we quantify the visual contribution of each branch and use this weight in packet scheduling. We show the efficiency of our representations and the effectiveness of our packet scheduler through experiments over a wide area network.

Funder

Agence Nationale de la Recherche

National University of Singapore

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference43 articles.

1. Realistic real-time rendering of landscapes using billboard clouds;Behrendt S.;Comput. Graph. For.,2005

2. Modeling the mighty maple

3. Degree reduction of Bézier curves by uniform approximation with endpoint interpolation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Procedural content generation for games;ACM Transactions on Multimedia Computing, Communications, and Applications;2013-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3