Neural Variational Gaussian Mixture Topic Model

Author:

Tang Yi-Kun1ORCID,Huang Heyan1ORCID,Shi Xuewen1ORCID,Mao Xian-Ling1ORCID

Affiliation:

1. School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China, and Beijing Engineering Research Center of High Volume Language Information Processing and Cloud Computing Applications, Beijing, China

Abstract

Neural variational inference-based topic modeling has gained great success in mining abstract topics from documents. However, these topic models usually mainly focus on optimizing the topic proportions for documents, while the quality and the internal construction of topics are usually neglected. Specifically, these models lack the guarantee that semantically related words are supposed to be assigned to the same topic and are difficult to ensure the interpretability of topics. Moreover, many topical words recur frequently in the top words of different topics, which makes the learned topics semantically redundant and similar, and of little significance for further study. To solve the above problems, we propose a novel neural topic model called Neural Variational Gaussian Mixture Topic Model (NVGMTM). We use Gaussian distribution to depict the semantic relevance between words in the topics. Each topic in NVGMTM is considered as a multivariate Gaussian distribution over words in the word-embedding space. Thus, semantically related words share similar probabilities in each topic, which makes the topics more coherent and interpretable. Experimental results on two public corpora show the proposed model outperforms the state-of-the-art baselines.

Funder

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference31 articles.

1. Ziye Chen, Cheng Ding, Zusheng Zhang, Yanghui Rao, and Haoran Xie. 2021. Tree-structured topic modeling with nonparametric neural variational inference. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. 2343–2353.

2. Gaussian LDA for Topic Models with Word Embeddings

3. Visualizing data using t-SNE;Maaten Laurens Van Der;J. Mach. Learn. Res.,2008

4. Ran Ding, Ramesh Nallapati, and Bing Xiang. 2018. Coherence-aware neural topic modeling. In Proceedings of the Conference on Empirical Methods in Natural Language Processing. 830–836.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3