A Deep Multi-level Attentive Network for Multimodal Sentiment Analysis

Author:

Yadav Ashima1,Vishwakarma Dinesh Kumar2

Affiliation:

1. Department of Computer Science and Engineering, Bennett University, Greater Noida, Uttar Pradesh, India

2. Department of Information Technology, Delhi Technological University, Rohini, New Delhi, India

Abstract

Multimodal sentiment analysis has attracted increasing attention with broad application prospects. Most of the existing methods have focused on a single modality, which fails to handle social media data due to its multiple modalities. Moreover, in multimodal learning, most of the works have focused on simply combining the two modalities without exploring the complicated correlations between them. This resulted in dissatisfying performance for multimodal sentiment classification. Motivated by the status quo, we propose a Deep Multi-level Attentive network (DMLANet), which exploits the correlation between image and text modalities to improve multimodal learning. Specifically, we generate the bi-attentive visual map along the spatial and channel dimensions to magnify Convolutional neural network representation power. Then, we model the correlation between the image regions and semantics of the word by extracting the textual features related to the bi-attentive visual features by applying semantic attention. Finally, self-attention is employed to fetch the sentiment-rich multimodal features for the classification automatically. We conduct extensive evaluations on four real-world datasets, namely, MVSA-Single, MVSA-Multiple, Flickr, and Getty Images, which verify our method's superiority.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference47 articles.

1. ViLBERT: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks;Lu J.;33rd Conference on Neural Information Processing Systems,2019

2. H. Akbari, L. Yuan, R. Qian, W.-H. Chuang, S.-F. Chang, Y. Cui, and B. Gong. 2021. VATT: Transformers for multimodal self-supervised learning from raw video, audio and text. In 35th Conference on Neural Information Processing Systems.

3. A. Radford, J. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, and J. Clark. 2021. Learning transferable visual models from natural language supervision. In 38th International Conference on Machine Learning.

4. A deep learning architecture of RA-DLNet for visual sentiment analysis

5. Sentiment analysis in medical settings: New opportunities and challenges

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3