Affiliation:
1. Multimedia University, Cyberjaya, Selangor, Malaysia
Abstract
Aesthetics is a subjective concept that is likely to be perceived differently among people of different ages, genders, and cultural backgrounds. While techniques that directly compute this concept in images has seen increasing attention by the multimedia and machine-learning community, there are very few attempts at encoding the influences from the photographer’s viewpoint. This work demonstrates how the aesthetic quality of photos can be better learned by accounting for the demographic background of a photographer. A new AVA-PD (Photographer Demographic) dataset is created to supplement the AVA dataset by providing photographers’ age, gender and location attributes. Two deep convolutional neural network (CNN) architectures are proposed to utilize demographic information for aesthetic prediction of photos; both are shown to yield better prediction capabilities compared to most existing approaches. By leveraging on AVA-PD meta-data, we also present some additional machine-learnable tasks such as identifying the photographer and predicting photography styles from a person’s gallery of photos.
Funder
MMU-GRA Scheme, Multimedia University
Ministry of Higher Education, Malaysia
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献