Mitigating DoS Attacks Using Performance Model-Driven Adaptive Algorithms

Author:

Barna Cornel1,Shtern Mark1,Smit Michael2,Tzerpos Vassilios1,Litoiu Marin1

Affiliation:

1. York University

2. Dalhousie University

Abstract

Denial of Service (DoS) attacks overwhelm online services, preventing legitimate users from accessing a service, often with impact on revenue or consumer trust. Approaches exist to filter network-level attacks, but application-level attacks are harder to detect at the firewall. Filtering at this level can be computationally expensive and difficult to scale, while still producing false positives that block legitimate users. This article presents a model-based adaptive architecture and algorithm for detecting DoS attacks at the web application level and mitigating them. Using a performance model to predict the impact of arriving requests, a decision engine adaptively generates rules for filtering traffic and sending suspicious traffic for further review, where the end user is given the opportunity to demonstrate they are a legitimate user. If no legitimate user responds to the challenge, the request is dropped. Experiments performed on a scalable implementation demonstrate effective mitigation of attacks launched using a real-world DoS attack tool.

Funder

International Business Machines Corporation

Amazon

Natural Sciences and Engineering Research Council of Canada

Publisher

Association for Computing Machinery (ACM)

Subject

Software,Computer Science (miscellaneous),Control and Systems Engineering

Reference48 articles.

1. APERA. 2009. Application Performance Evaluation and Resource Allocator (APERA). http://www.alphaworks.ibm.com/tech/apera. APERA. 2009. Application Performance Evaluation and Resource Allocator (APERA). http://www.alphaworks.ibm.com/tech/apera.

2. Asymptotic analysis of multiclass closed queueing networks: Multiple bottlenecks

3. Autonomic load-testing framework

4. Dobbins R. Morales C. Anstee D. Arruda J. Bienkowski T. Hollyman M. Labovitz C. Nazario J. Seo E. and Shah R. 2010. Worldwide InfrastructUre security report. Tech. rep. Arbor Networks. Dobbins R. Morales C. Anstee D. Arruda J. Bienkowski T. Hollyman M. Labovitz C. Nazario J. Seo E. and Shah R. 2010. Worldwide InfrastructUre security report. Tech. rep. Arbor Networks.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent resource management at the network edge using content delivery networks;Enterprise Information Systems;2022-02-16

2. Firewall Design and Implementation;Intelligent Security Systems;2021-09-24

3. From DevOps to BizOps;ACM Transactions on Autonomous and Adaptive Systems;2018-01-31

4. Challenges in Composing and Decomposing Assurances for Self-Adaptive Systems;Software Engineering for Self-Adaptive Systems III. Assurances;2017

5. Economics-driven resource scalability on the cloud;Proceedings of the 11th International Symposium on Software Engineering for Adaptive and Self-Managing Systems;2016-05-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3