Power System Frequency Dynamics Modeling, State Estimation, and Control using Neural Ordinary Differential Equations (NODEs) and Soft Actor-Critic (SAC) Machine Learning Approaches

Author:

Aslami Pooja1,Aryal Tara1,Rai Astha2,Bhujel Niranjan2,Rekabdarkolaee Hossein Moradi1,Fu Kaiqun1,Tonkoski Reinaldo3,Wang Zongjie4,Hansen Timothy M.1

Affiliation:

1. South Dakota State University, Brookings, South Dakota, USA

2. University of Maine, Orono, Maine, USA

3. Technical University of Munich, Munich, Germany

4. University of Connecticut, Storrs, Connecticut, USA

Abstract

With the global energy transition of the electric power system, grid control, supervision, and protection is becoming more challenging. With the increasing integration of renewable energy sources (RES), the system dynamics are changing, causing traditional power system dynamic modeling with swing equation-based modeling approaches to fail. Additionally, the converter-dominated power grid is decreasing the system inertia, making the power system more fragile to the frequency swings. This paper first investigates and compares the application of a model-based Kalman filter state estimation approach with (i) a model-free machine learning approach --- neural ordinary differential equations (NODEs) --- and (ii) a data-driven system identification (SysId) approach to model and infer critical state values of the power system frequency dynamics. Then a model predictive control (MPC) framework is compared to a model-free Soft Actor-Critic (SAC) reinforcement learning (RL) control algorithm in providing efficient fast frequency response (FFR) to the power system frequency dynamics. The approaches are compared in terms of their performance goals as well as their per-timestep computational efficiency. The comparative study for state estimation shows that for the model-free requirement, both NODEs and SysId can provide accurate state estimates; however, with increasing model complexity, NODEs can be a better choice for model identification. Similarly, the results from the FFR comparative study show that the SAC RL-based FFR, once trained, outperforms MPC with better control signals and faster computation time, making the SAC RL-based FFR better option for providing FFR to the power system.

Publisher

Association for Computing Machinery (ACM)

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3