Seq2Parse: neurosymbolic parse error repair

Author:

Sakkas Georgios1ORCID,Endres Madeline2ORCID,Guo Philip J.1ORCID,Weimer Westley2ORCID,Jhala Ranjit1ORCID

Affiliation:

1. University of California at San Diego, USA

2. University of Michigan, USA

Abstract

We present Seq2Parse, a language-agnostic neurosymbolic approach to automatically repairing parse errors. Seq2Parse is based on the insight that Symbolic Error Correcting (EC) Parsers can, in principle, synthesize repairs, but, in practice, are overwhelmed by the many error-correction rules that are not relevant to the particular program that requires repair. In contrast, Neural approaches are fooled by the large space of possible sequence level edits, but can precisely pinpoint the set of EC-rules that are relevant to a particular program. We show how to combine their complementary strengths by using neural methods to train a sequence classifier that predicts the small set of relevant EC-rules for an ill-parsed program, after which, the symbolic EC-parsing algorithm can make short work of generating useful repairs. We train and evaluate our method on a dataset of 1,100,000 Python programs, and show that Seq2Parse is accurate and efficient : it can parse 94% of our tests within 2.1 seconds, while generating the exact user fix in 1 out 3 of the cases; and useful : humans perceive both Seq2Parse-generated error locations and repairs to be almost as good as human-generated ones in a statistically-significant manner.

Funder

National Science Foundation

Air Force Office of Scientific Research

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Reference56 articles.

1. Learning programming, syntax errors and institution-specific factors

2. Learning lenient parsing & typing via indirect supervision

3. LR Parsing

4. A Minimum Distance Error-Correcting Parser for Context-Free Languages

5. Dzmitry Bahdanau , Kyunghyun Cho , and Yoshua Bengio . 2015. Neural Machine Translation by Jointly Learning to Align and Translate. CoRR, abs/1409.0473 ( 2015 ). Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine Translation by Jointly Learning to Align and Translate. CoRR, abs/1409.0473 (2015).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Pragmatic Approach to Syntax Repair;Companion Proceedings of the 2023 ACM SIGPLAN International Conference on Systems, Programming, Languages, and Applications: Software for Humanity;2023-10-22

2. OrdinalFix: Fixing Compilation Errors via Shortest-Path CFL Reachability;2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE);2023-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3