Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half

Author:

Hwang Hsien-Kuei1ORCID,Janson Svante2,Tsai Tsung-Hsi1

Affiliation:

1. Academia Sinica, Taipei, Taiwan

2. Uppsala University, Uppsala, Sweden

Abstract

Divide-and-conquer recurrences of the form f ( n ) = f (⌊ n/2⌋ ) + f ( ⌈ n/2⌉ ) + g ( n ) ( n ⩾ 2), with g ( n ) and f (1) given, appear very frequently in the analysis of computer algorithms and related areas. While most previous methods and results focus on simpler crude approximation to the solution, we show that the solution always satisfies the simple identity f ( n ) = n P (log 2 n ) − Q ( n ) under an optimum (iff) condition on g ( n ). This form is not only an identity but also an asymptotic expansion because Q ( n ) is of a smaller order than linearity. Explicit forms for the continuous periodic function P are provided. We show how our results can be easily applied to many dozens of concrete examples collected from the literature and how they can be extended in various directions. Our method of proof is surprisingly simple and elementary but leads to the strongest types of results for all examples to which our theory applies.

Funder

Isaac Newton Institute for Mathematical Sciences EPSCR

Simons Foundation and a grant from the Knut and Alice Wallenberg Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Reference77 articles.

1. A. V. Aho J. E. Hopcroft and J. D. Ullman. 1975. The Design and Analysis of Computer Algorithms. Second printing. Addison-Wesley Publishing Co. Reading MA. A. V. Aho J. E. Hopcroft and J. D. Ullman. 1975. The Design and Analysis of Computer Algorithms. Second printing. Addison-Wesley Publishing Co. Reading MA.

2. The Takagi Function: a Survey

3. The ring of k-regular sequences

4. J.-P. Allouche and J. Shallit. 2003. Automatic Sequences. Theory Applications Generalizations Cambridge University Press Cambridge UK. J.-P. Allouche and J. Shallit. 2003. Automatic Sequences. Theory Applications Generalizations Cambridge University Press Cambridge UK.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identities and periodic oscillations of divide-and-conquer recurrences splitting at half;Advances in Applied Mathematics;2024-04

2. Enumeration of Payphone Permutations;The American Mathematical Monthly;2024-03-27

3. Explicit solution of divide-and-conquer dividing by a half recurrences with polynomial independent term;PLOS ONE;2022-11-17

4. Asymptotic Analysis of q-Recursive Sequences;Algorithmica;2022-05-04

5. A Gröbner-basis theory for divide-and-conquer recurrences;Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation;2020-07-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3