XNAS: A Regressive/Progressive NAS for Deep Learning

Author:

Kung S. Y.1ORCID

Affiliation:

1. Princeton University, Princeton

Abstract

Deep learning has achieved great and broad breakthroughs in many real-world applications. In particular, the task of training the network parameters has been masterly handled by back-propagation learning. However, the pursuit on optimal network structures remains largely an art of trial and error. This prompts some urgency to explore an architecture engineering process, collectively known as Neural Architecture Search (NAS). In general, NAS is a design software system for automating the search of effective neural architecture. This article proposes an X-learning NAS (XNAS) to automatically train a network’s structure and parameters. Our theoretical footing is built upon the subspace and correlation analyses between the input layer, hidden layer, and output layer. The design strategy hinges upon the underlying principle that the network should be coerced to learn how to structurally improvethe input/output correlation successively (i.e., layer by layer). It embraces both Progressive NAS (PNAS) and Regressive NAS (RNAS). For unsupervised RNAS, Principal Component Analysis (PCA) is a classic tool for subspace analyses. By further incorporating teacher’s guidance, PCA can be extended to Regression Component Analysis (RCA) to facilitate supervised NAS design. This allows the machine to extract components most critical to the targeted learning objective. We shall further extend the subspace analysis from multi-layer perceptrons to convolutional neural networks, via introduction of Convolutional-PCA (CPCA) or, more simply, Deep-PCA (DPCA). The supervised variant of DPCA will be named Deep-RCA (DRCA). The subspace analyses allow us to compute optimal eigenvectors (respectively, eigen-filters) and principal components (respectively, eigen-channels) for optimal NAS design of multi-layer perceptrons (respectively, convolutional neural networks). Based on the theoretical analysis, an X-learning paradigm is developed to jointly learn the structure and parameters of learning models. The objective is to reduce the network complexity while retaining (and sometimes improving) the performance. With carefully pre-selected baseline models, X-learning has shown great successes in numerous classification-type and/or regression-type applications. We have applied X-learning to the ImageNet datasets for classification and DIV2K for image enhancements. By applying X-learning to two types of baseline models, MobileNet and ResNet, both the low-power and high-performance application categories can be supported. Our simulations confirm that X-learning is by and large very competitive relative to the state-of-the-art approaches.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference51 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Architecture Search for Deep Neural Network;Lecture Notes in Computer Science;2023

2. Component Extraction for Deep Learning Through Progressive Method;Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3