A Uniform Error Bound for Stochastic Kriging: Properties and Implications on Simulation Experimental Design

Author:

Chen Xi1ORCID,Zhang Yutong1ORCID,Xie Guangrui1ORCID,Zhang Jingtao1ORCID

Affiliation:

1. Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, United States

Abstract

In this work, we propose a method to construct a uniform error bound for the SK predictor. In investigating the asymptotic properties of the proposed uniform error bound, we examine the convergence rate of SK’s predictive variance under the supremum norm in both fixed and random design settings. Our analyses reveal that the large-sample properties of SK prediction depend on the design-point sampling scheme and the budget allocation scheme adopted. Appropriately controlling the order of noise variances through budget allocation is crucial for achieving a desirable convergence rate of SK’s approximation error, as quantified by the uniform error bound, and for maintaining SK’s numerical stability. Moreover, we investigate the impact of noise variance estimation on the uniform error bound’s performance theoretically and numerically. We demonstrate the superiority of the proposed uniform bound to the Bonferroni correction-based simultaneous confidence interval under various experimental settings through numerical evaluations.

Publisher

Association for Computing Machinery (ACM)

Reference56 articles.

1. Stochastic Kriging for Simulation Metamodeling

2. Extension of sampling inequalities to Sobolev semi-norms of fractional order and derivative data

3. On some global measures of deviations of density function stimates;Bickel P.;The Annals of Statistics,1973

4. Simultaneous confidence bands for nonparametric regression with missing covariate data;Cai L.;Annals of the Institute of Statistical Mathematics,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3