Models and solutions for radio irregularity in wireless sensor networks

Author:

Zhou Gang1,He Tian1,Krishnamurthy Sudha1,Stankovic John A.1

Affiliation:

1. University of Virginia, Charlottesville, VA

Abstract

In this article, we investigate the impact of radio irregularity on wireless sensor networks. Radio irregularity is a common phenomenon that arises from multiple factors, such as variance in RF sending power and different path losses, depending on the direction of propagation. From our experiments, we discover that the variance in received signal strength is largely random; however, it exhibits a continuous change with incremental changes in direction. With empirical data obtained from the MICA2 and MICAZ platforms, we establish a radio model for simulation, called the Radio Irregularity Model (RIM). This model is the first to bridge the discrepancy between the spherical radio models used by simulators and the physical reality of radio signals. With this model, we investigate the impact of radio irregularity on several upper layer protocols, including MAC, routing, localization and topology control. Our results show that radio irregularity has a relatively larger impact on the routing layer than the MAC layer. It also shows that radio irregularity leads to larger localization errors and makes it harder to maintain communication connectivity in topology control. To deal with these issues, we present eight solutions to deal with radio irregularity. We evaluate three of them in detail. The results obtained from both the simulations and a running testbed demonstrate that our solutions greatly improve system performance in the presence of radio irregularity.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference52 articles.

1. Battery Lifetime. Battery Technology Life Verification Test Manual. http://www.uscar.org/consortia&teams/USABC/Manuals/TechnologyLife Verification Test Manual - Feb 2005.pdf. Battery Lifetime. Battery Technology Life Verification Test Manual. http://www.uscar.org/consortia&teams/USABC/Manuals/TechnologyLife Verification Test Manual - Feb 2005.pdf.

2. MACAW

Cited by 160 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3