Navigating the EU AI Act Maze using a Decision-Tree Approach

Author:

Hanif Hilmy1ORCID,Constantino Jorge2ORCID,Sekwenz Marie-Therese2ORCID,van Eeten Michel2ORCID,Ubacht Jolien2ORCID,Wagner Ben2ORCID,Zhauniarovich Yury2ORCID

Affiliation:

1. TPM, TU Delft, Delft, Netherlands

2. TPM, TU Delft, Delft Netherlands

Abstract

The AI Act represents a significant legislative effort by the European Union to govern the use of AI systems according to different risk-related classes, imposing different degrees of compliance obligations to users and providers of AI systems. However, it is often critiqued due to the lack of general public comprehension and effectiveness regarding the classification of AI systems to the corresponding risk classes. To mitigate these shortcomings, we propose a Decision-Tree-based framework aimed at increasing legal compliance and classification clarity. By performing a quantitative evaluation, we show that our framework is especially beneficial to individuals without a legal background, allowing them to enhance the accuracy and speed of AI system classification according to the AI Act. The qualitative study results show that the framework is helpful to all participants, allowing them to justify intuitively made decisions and making the classification process clearer.

Publisher

Association for Computing Machinery (ACM)

Reference44 articles.

1. Sushant Agarwal, Sabrina Kirrane, and Johannes Scharf. 2017. Modelling the General Data Protection Regulation. Internationales Rechtsinformatik Symposion IRIS (2017).

2. Legislative Compliance Assessment: Framework, Model and GDPR Instantiation

3. Questioning the EU proposal for an Artificial Intelligence Act: The need for prohibitions and a stricter approach to biometric surveillance1

4. Matching and Prediction on the Principle of Biological Classification

5. Michael Chui Eric Hazan Roger Roberts Alex Singla Kate Smaje Alex Sukharevsky Lareina Yee and Rodney Zemmel. 2023. The Economic Potential of Generative AI: The Next Productivity Frontier. Retrieved 2024-03-11 from https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3