DisguisedNets: Secure Image Outsourcing for Confidential Model Training in Clouds

Author:

Chen Keke1ORCID,Gu Yuechun1ORCID,Sharma Sagar2ORCID

Affiliation:

1. Marquette University, USA

2. TikTok, Inc, USA

Abstract

Large training data and expensive model tweaking are standard features of deep learning with images. As a result, data owners often utilize cloud resources to develop large-scale complex models, which also raises privacy concerns. Existing cryptographic solutions for training deep neural networks (DNNs) are too expensive, cannot effectively utilize cloud GPU resources, and also put a significant burden on client-side pre-processing. This article presents an image disguising approach: DisguisedNets, which allows users to securely outsource images to the cloud and enables confidential, efficient GPU-based model training. DisguisedNets uses a novel combination of image blocktization, block-level random permutation, and block-level secure transformations: random multidimensional projection (RMT) or AES pixel-level encryption (AES) to transform training data. Users can use existing DNN training methods and GPU resources without any modification to training models with disguised images. We have analyzed and evaluated the methods under a multi-level threat model and compared them with another similar method—InstaHide. We also show that the image disguising approach, including both DisguisedNets and InstaHide, can effectively protect models from model-targeted attacks.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference52 articles.

1. Deep Learning with Differential Privacy

2. Using Deep Convolutional Neural Network Architectures for Object Classification and Detection Within X-Ray Baggage Security Imagery

3. Nicholas Carlini, Samuel Deng, Sanjam Garg, Somesh Jha, Saeed Mahloujifar, Mohammad Mahmoody, Shuang Song, Abhradeep Thakurta, and Florian Tramèr. 2021. Is private learning possible with instance encoding? In Proceedings of the IEEE Symposium on Security and Privacy (S&P’21).

4. Adversarial attacks and defences: A survey;Chakraborty Anirban;CoRR,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3