SketchDLC

Author:

Xu Yemao1,Dong Dezun2,Xu Weixia2,Liao Xiangke2

Affiliation:

1. National University of Defense Technology

2. National University of Defense Technology, Changsha, Hunan, China

Abstract

With the fast development of deep learning (DL), the communication is increasingly a bottleneck for distributed workloads, and a series of optimization works have been done to scale out successfully. Nevertheless, the network behavior has not been investigated much yet. We intend to analyze the network behavior and then carry out some research through network simulation. Under this circumstance, an accurate communication measurement is necessary, as it is an effective way to study the network behavior and the basis for accurate simulation. Therefore, we propose to capture the deep learning communication (DLC) trace to achieve the measurement. To the best of our knowledge, we make the first attempt to capture the communication trace for DL training. In this article, we first provide detailed analyses about the communication mechanism of MXNet, which is a representative framework for distributed DL. Secondly, we define the DLC trace format to describe and record the communication behaviors. Third, we present the implementation of method for trace capturing. Finally, we make some statistics and analyses about the distributed DL training, including communication pattern, overlap ratio between computation and communication, computation overhead, synchronization overhead, update overhead, and so forth. Both the statistics and analyses are based on the trace files captured in a cluster with six machines. On the one hand, our trace files provide a sketch on the DLC, which contributes to understanding the communication details. On the other hand, the captured trace files can be used for figuring out various overheads, as they record the communication behaviors of each node.

Funder

National Science and Technology Major Projects on Core Electronic Devices, High-End Generic Chips and Basic Software

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3