Range queries in OLAP data cubes

Author:

Ho Ching-Tien1,Agrawal Rakesh1,Megiddo Nimrod1,Srikant Ramakrishnan1

Affiliation:

1. IBM Almaden Research Center, 650 Harry Road, San Jose, CA

Abstract

A range query applies an aggregation operation over all selected cells of an OLAP data cube where the selection is specified by providing ranges of values for numeric dimensions. We present fast algorithms for range queries for two types of aggregation operations: SUM and MAX. These two operations cover techniques required for most popular aggregation operations, such as those supported by SQL. For range-sum queries, the essential idea is to precompute some auxiliary information (prefix sums) that is used to answer ad hoc queries at run-time. By maintaining auxiliary information which is of the same size as the data cube, all range queries for a given cube can be answered in constant time, irrespective of the size of the sub-cube circumscribed by a query. Alternatively, one can keep auxiliary information which is 1/ b d of the size of the d -dimensional data cube. Response to a range query may now require access to some cells of the data cube in addition to the access to the auxiliary information, but the overall time complexity is typically reduced significantly. We also discuss how the precomputed information is incrementally updated by batching updates to the data cube. Finally, we present algorithms for choosing the subset of the data cube dimensions for which the auxiliary information is computed and the blocking factor to use for each such subset. Our approach to answering range-max queries is based on precomputed max over balanced hierarchical tree structures. We use a branch-and-bound-like procedure to speed up the finding of max in a region. We also show that with a branch-and-bound procedure, the average-case complexity is much smaller than the worst-case complexity.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Reference38 articles.

1. Multidimensional divide-and-conquer

2. J.L. Bentley and J. H. Friedman. Data structures for range searching. Computing Surveys ~1(4) 19~9.]] 10.1145/356789.356797 J.L. Bentley and J. H. Friedman. Data structures for range searching. Computing Surveys ~1(4) 19~9.]] 10.1145/356789.356797

3. The R*-tree: an efficient and robust access method for points and rectangles

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3