Beyond market baskets

Author:

Brin Sergey1,Motwani Rajeev1,Silverstein Craig1

Affiliation:

1. Department of Computer Science, Stanford University, Stanford, CA

Abstract

One of the most well-studied problems in data mining is mining for association rules in market basket data. Association rules, whose significance is measured via support and confidence, are intended to identify rules of the type, “A customer purchasing item A often also purchases item B.” Motivated by the goal of generalizing beyond market baskets and the association rules used with them, we develop the notion of mining rules that identify correlations (generalizing associations), and we consider both the absence and presence of items as a basis for generating rules. We propose measuring significance of associations via the chi-squared test for correlation from classical statistics. This leads to a measure that is upward closed in the itemset lattice, enabling us to reduce the mining problem to the search for a border between correlated and uncorrelated itemsets in the lattice. We develop pruning strategies and devise an efficient algorithm for the resulting problem. We demonstrate its effectiveness by testing it on census data and finding term dependence in a corpus of text documents, as well as on synthetic data.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Cited by 243 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Post–mining on Association Rule Bases;Communications in Computer and Information Science;2024

2. Data Mining: Mining Frequent Patterns, Associations Rules, and Correlations;Reference Module in Life Sciences;2024

3. An integrated approach to identify criteria interactions based on association rule and capacity in MCDA;OR Spectrum;2023-10-20

4. Statistical limitations of sensitive itemset hiding methods;Applied Intelligence;2023-07-20

5. Time-Aware Data Profiling With Decision Tree Pattern Mining;2023 IEEE 25th Conference on Business Informatics (CBI);2023-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3