Interactive Character Control with Auto-Regressive Motion Diffusion Models

Author:

Shi Yi12ORCID,Wang Jingbo3ORCID,Jiang Xuekun3ORCID,Lin Bingkun4ORCID,Dai Bo3ORCID,Peng Xue Bin56ORCID

Affiliation:

1. Simon Fraser University, Burnaby, Canada

2. Shanghai Aritificial Intelligence Laboratory, Burnaby, Canada

3. Shanghai AI Lab, Shanghai, China

4. Xmov, Shanghai, China

5. Simon Fraser University, Vancouver, Canada

6. NVIDIA, Vancouver, Canada

Abstract

Real-time character control is an essential component for interactive experiences, with a broad range of applications, including physics simulations, video games, and virtual reality. The success of diffusion models for image synthesis has led to the use of these models for motion synthesis. However, the majority of these motion diffusion models are primarily designed for offline applications, where space-time models are used to synthesize an entire sequence of frames simultaneously with a pre-specified length. To enable real-time motion synthesis with diffusion model that allows time-varying controls, we propose A-MDM (Auto-regressive Motion Diffusion Model). Our conditional diffusion model takes an initial pose as input, and auto-regressively generates successive motion frames conditioned on the previous frame. Despite its streamlined network architecture, which uses simple MLPs, our framework is capable of generating diverse, long-horizon, and high-fidelity motion sequences. Furthermore, we introduce a suite of techniques for incorporating interactive controls into A-MDM, such as task-oriented sampling, in-painting, and hierarchical reinforcement learning (See Figure 1). These techniques enable a pre-trained A-MDM to be efficiently adapted for a variety of new downstream tasks. We conduct a comprehensive suite of experiments to demonstrate the effectiveness of A-MDM, and compare its performance against state-of-the-art auto-regressive methods.

Publisher

Association for Computing Machinery (ACM)

Reference55 articles.

1. Structured Prediction Helps 3D Human Motion Modelling

2. Emad Barsoum, John Kender, and Zicheng Liu. 2017. HP-GAN: Probabilistic 3D human motion prediction via GAN. CoRR (2017).

3. Gustav Bredell, Kyriakos Flouris, Krishna Chaitanya, Ertunc Erdil, and Ender Konukoglu. 2021. Minimizing the Blur Error of Variational Autoencoders. In Advances in Neural Information Processing Systems 34 (NeurIPS 2021).

4. Greg Brockman Vicki Cheung Ludwig Pettersson Jonas Schneider John Schulman Jie Tang and Wojciech Zaremba. 2016. OpenAI Gym. arXiv:arXiv:1606.01540

5. Rishabh Dabral, Muhammad Hamza Mughal, Vladislav Golyanik, and Christian Theobalt. 2023. MoFusion: A Framework for Denoising-Diffusion-based Motion Synthesis. In CVPR.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3