Enhancing Privacy in PUF-Cash through Multiple Trusted Third Parties and Reinforcement Learning

Author:

Fragkos Georgios1,Minwalla Cyrus2,Tsiropoulou Eirini Eleni1,Plusquellic Jim1

Affiliation:

1. University of New Mexico, New Mexico, United States

2. Bank of Canada, Ottawa, Canada

Abstract

Electronic cash ( e-Cash ) is a digital alternative to physical currency such as coins and bank notes. Suitably constructed, e-Cash has the ability to offer an anonymous offline experience much akin to cash, and in direct contrast to traditional forms of payment such as credit and debit cards. Implementing security and privacy within e-Cash, i.e., preserving user anonymity while preventing counterfeiting, fraud, and double spending, is a non-trivial challenge. In this article, we propose major improvements to an e-Cash protocol, termed PUF-Cash, based on physical unclonable functions ( PUFs ). PUF-Cash was created as an offline-first, secure e-Cash scheme that preserved user anonymity in payments. In addition, PUF-Cash supports remote payments; an improvement over traditional currency. In this work, a novel multi-trusted-third-party exchange scheme is introduced, which is responsible for “blinding” Alice’s e-Cash tokens; a feature at the heart of preserving her anonymity. The exchange operations are governed by machine learning techniques which are uniquely applied to optimize user privacy, while remaining resistant to identity-revealing attacks by adversaries and trusted authorities. Federation of the single trusted third party into multiple entities distributes the workload, thereby improving performance and resiliency within the e-Cash system architecture. Experimental results indicate that improvements to PUF-Cash enhance user privacy and scalability.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Reference26 articles.

1. HELP: A hardware-embedded delay PUF;Aarestad J.;IEEE Design and Test,2013

2. On a measure of divergence between two statistical populations defined by their probability distributions;Bhattacharyya A.;Bulletin of the Calcutta Mathematical Society,1943

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3