Scintilla: Simulating Combustible Vegetation for Wildfires

Author:

Kokosza Andrzej1ORCID,Wrede Helge2ORCID,Gonzalez Esparza Daniel3ORCID,Makowski Milosz1ORCID,Liu Daoming3ORCID,Michels Dominik L.3ORCID,Pirk Soren2ORCID,Palubicki Wojtek1ORCID

Affiliation:

1. AMU, Poznan, Poland

2. CAU, Kiel, Germany

3. KAUST, Thuwal, Saudi Arabia

Abstract

Wildfires are a complex physical phenomenon that involves the combustion of a variety of flammable materials ranging from fallen leaves and dried twigs to decomposing organic material and living flora. All these materials can potentially act as fuel with different properties that determine the progress and severity of a wildfire. In this paper, we propose a novel approach for simulating the dynamic interaction between the varying components of a wildfire, including processes of convection, combustion and heat transfer between vegetation, soil and atmosphere. We propose a novel representation of vegetation that includes detailed branch geometry, fuel moisture, and distribution of grass, fine fuel, and duff. Furthermore, we model the ignition, generation, and transport of fire by firebrands and embers. This allows simulating and rendering virtual 3D wildfires that realistically capture key aspects of the process, such as progressions from ground to crown fires, the impact of embers carried by wind, and the effects of fire barriers and other human intervention methods. We evaluate our approach through numerous experiments and based on comparisons to real-world wildfire data.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3