Ursa

Author:

You Gae-Won1,Hwang Seung-Won1,Jain Navendu2

Affiliation:

1. Pohang University of Science and Technology

2. Microsoft Research Redmond

Abstract

Enterprise and cloud data centers are comprised of tens of thousands of servers providing petabytes of storage to a large number of users and applications. At such a scale, these storage systems face two key challenges: (1) hot-spots due to the dynamic popularity of stored objects; and (2) high operational costs due to power and cooling. Existing storage solutions, however, are unsuitable to address these challenges because of the large number of servers and data objects. This article describes the design, implementation, and evaluation of Ursa, a system that scales to a large number of storage nodes and objects, and aims to minimize latency and bandwidth costs during system reconfiguration. Toward this goal, Ursa formulates an optimization problem that selects a subset of objects from hot-spot servers and performs topology-aware migration to minimize reconfiguration costs. As exact optimization is computationally expensive, we devise scalable approximation techniques for node selection and efficient divide-and-conquer computation. We also show that the same dynamic reconfiguration techniques can be leveraged to reduce power costs by dynamically migrating data off under-utilized nodes, and powering up servers neighboring existing hot-spots to reduce reconfiguration costs. Our evaluation shows that Ursa achieves cost-effective load management, is time-responsive in computing placement decisions (e.g., about two minutes for 10K nodes and 10M objects), and provides power savings of 15%--37%.

Funder

Microsoft Research

National IT Industry Promotion Agency

Ministry of Knowledge Economy

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture

Reference38 articles.

1. Amazon S3. 2012. http://aws.amazon.com/s3/. Amazon S3. 2012. http://aws.amazon.com/s3/.

2. The Case for Energy-Proportional Computing

3. Managing energy and server resources in hosting centers

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hot-N-Cold model for energy aware cloud databases;Journal of Parallel and Distributed Computing;2019-01

2. Frequency Selection Approach for Energy Aware Cloud Database;IEEE Access;2019

3. Latency-Sensitive Data Allocation and Workload Consolidation for Cloud Storage;IEEE Access;2018

4. T-Part;Proceedings of the 2016 International Conference on Management of Data;2016-06-26

5. QoS-Aware Autonomic Resource Management in Cloud Computing;ACM Computing Surveys;2016-02-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3