Pump Up Password Security! Evaluating and Enhancing Risk-Based Authentication on a Real-World Large-Scale Online Service

Author:

Wiefling Stephan1ORCID,Jørgensen Paul René2ORCID,Thunem Sigurd2ORCID,Iacono Luigi Lo3ORCID

Affiliation:

1. H-BRS University of Applied Sciences, Germany and Ruhr University Bochum, Bochum, Germany

2. Telenor Digital, Fornebu, Norway

3. H-BRS University of Applied Sciences, Sankt Augustin, Germany

Abstract

Risk-based authentication (RBA) aims to protect users against attacks involving stolen passwords. RBA monitors features during login, and requests re-authentication when feature values widely differ from those previously observed. It is recommended by various national security organizations, and users perceive it more usable than and equally secure to equivalent two-factor authentication. Despite that, RBA is still used by very few online services. Reasons for this include a lack of validated open resources on RBA properties, implementation, and configuration. This effectively hinders the RBA research, development, and adoption progress. To close this gap, we provide the first long-term RBA analysis on a real-world large-scale online service. We collected feature data of 3.3 million users and 31.3 million login attempts over more than 1 year. Based on the data, we provide (i) studies on RBA’s real-world characteristics plus its configurations and enhancements to balance usability, security, and privacy; (ii) a machine learning–based RBA parameter optimization method to support administrators finding an optimal configuration for their own use case scenario; (iii) an evaluation of the round-trip time feature’s potential to replace the IP address for enhanced user privacy; and (iv) a synthesized RBA dataset to reproduce this research and to foster future RBA research. Our results provide insights on selecting an optimized RBA configuration so that users profit from RBA after just a few logins. The open dataset enables researchers to study, test, and improve RBA for widespread deployment in the wild.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,General Computer Science

Reference73 articles.

1. Secure client and server geolocation over the internet;Abdou Abdelrahman;;login: Spring 2018,2018

2. TypeNet: Scaling up Keystroke Biometrics

3. Credential stuffing: Attacks and economies;[state of the internet] / security,2019

4. Loyalty for sale – retail and hospitality fraud;[state of the internet] / security,2020

5. Device fingerprinting for augmenting web authentication

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3