Similarity-Based Synthetic Document Representations for Meta-Feature Generation in Text Classification
Author:
Affiliation:
1. DCC - UFMG, Belo Horizonte, Brazil
2. INF - UFG, Goiânia, Brazil
Funder
Fapemig
CNPq
Capes
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3331184.3331239
Reference20 articles.
1. Exploiting New Sentiment-Based Meta-level Features for Effective Sentiment Analysis
2. Sergio Canuto Goncalves Marcos Wisllay Santos Thierson Rosa and Martins Wellington. 2015. Efficient and Scalable MetaFeature-based Document Classification using Massively Parallel Computing. In SIGIR. 333--342. 10.1145/2766462.2767743 Sergio Canuto Goncalves Marcos Wisllay Santos Thierson Rosa and Martins Wellington. 2015. Efficient and Scalable MetaFeature-based Document Classification using Massively Parallel Computing. In SIGIR. 333--342. 10.1145/2766462.2767743
3. On Efficient Meta-Level Features for Effective Text Classification
4. LIBLINEAR;Fan Rong-En;A Library for Large Linear Classification. JMLR,2008
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An Effective, Efficient, and Scalable Confidence-based Instance Selection Framework for Transformer-Based Text Classification;Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval;2023-07-18
2. A Comparative Survey of Instance Selection Methods applied to Non-Neural and Transformer-Based Text Classification;ACM Computing Surveys;2023-07-13
3. Stroke Outcome Measurements From Electronic Medical Records: Cross-sectional Study on the Effectiveness of Neural and Nonneural Classifiers;JMIR Medical Informatics;2021-11-01
4. Files of a Feather Flock Together? Measuring and Modeling How Users Perceive File Similarity in Cloud Storage;Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval;2021-07-11
5. On the cost-effectiveness of neural and non-neural approaches and representations for text classification: A comprehensive comparative study;Information Processing & Management;2021-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3