Refunctionalization of abstract abstract machines: bridging the gap between abstract abstract machines and abstract definitional interpreters (functional pearl)

Author:

Wei Guannan1,Decker James1,Rompf Tiark1

Affiliation:

1. Purdue University, USA

Abstract

Abstracting abstract machines is a systematic methodology for constructing sound static analyses for higher-order languages, by deriving small-step abstract abstract machines (AAMs) that perform abstract interpretation from abstract machines that perform concrete evaluation. Darais et al. apply the same underlying idea to monadic definitional interpreters, and obtain monadic abstract definitional interpreters (ADIs) that perform abstract interpretation in big-step style using monads. Yet, the relation between small-step abstract abstract machines and big-step abstract definitional interpreters is not well studied. In this paper, we explain their functional correspondence and demonstrate how to systematically transform small-step abstract abstract machines into big-step abstract definitional interpreters. Building on known semantic interderivation techniques from the concrete evaluation setting, the transformations include linearization, lightweight fusion, disentanglement, refunctionalization, and the left inverse of the CPS transform. Linearization expresses nondeterministic choice through first-order data types, after which refunctionalization transforms the first-order data types that represent continuations into higher-order functions. The refunctionalized AAM is an abstract interpreter written in continuation-passing style (CPS) with two layers of continuations, which can be converted back to direct style with delimited control operators. Based on the known correspondence between delimited control and monads, we demonstrate that the explicit use of monads in abstract definitional interpreters is optional. All transformations properly handle the collecting semantics and nondeterminism of abstract interpretation. Remarkably, we reveal how precise call/return matching in control-flow analysis can be obtained by refunctionalizing a small-step abstract abstract machine with proper caching.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatically deriving control-flow graph generators from operational semantics;Proceedings of the ACM on Programming Languages;2022-08-29

2. Newly-single and loving it: improving higher-order must-alias analysis with heap fragments;Proceedings of the ACM on Programming Languages;2021-08-22

3. Compiling symbolic execution with staging and algebraic effects;Proceedings of the ACM on Programming Languages;2020-11-13

4. Liberate Abstract Garbage Collection from the Stack by Decomposing the Heap;Programming Languages and Systems;2020

5. Staged abstract interpreters: fast and modular whole-program analysis via meta-programming;Proceedings of the ACM on Programming Languages;2019-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3