Random numbers for simulation

Author:

L'Ecuyer Pierre1

Affiliation:

1. Univ. of Montre´al, Montre´al, P.Q., Canada

Abstract

In the mind of the average computer user, the problem of generating uniform variates by computer has been solved long ago. After all, every computer :system offers one or more function(s) to do so. Many software products, like compilers, spreadsheets, statistical or numerical packages, etc. also offer their own. These functions supposedly return numbers that could be used, for all practical purposes, as if they were the values taken by independent random variables, with a uniform distribution between 0 and 1. Many people use them with faith and feel happy with the results. So, why bother? Other (less naive) people do not feel happy with the results and with good reasons. Despite renewed crusades, blatantly bad generators still abound, especially on microcomputers [55, 69, 85, 90, 100]. Other generators widely used on medium-sized computers are perhaps not so spectacularly bad, but still fail some theoretical and/or empirical statistical tests, and/or generate easily detectable regular patterns [56, 65]. Fortunately, many applications appear quite robust to these defects. But with the rapid increase in desktop computing power, increasingly sophisticated simulation studies are being performed that require more and more “random” numbers and whose results are more sensitive to the quality of the underlying generator [28, 40, 65, 90]. Sometimes, using a not-so-good generator can give totally misleading results. Perhaps this happens rarely, but can be disastrous in some cases. For that reason, researchers are still actively investigating ways of building generators. The main goal is to design more robust generators without having to pay too much in terms of portability, flexibility, and efficiency. In the following sections, we give a quick overview of the ongoing research. We focus mainly on efficient and recently proposed techniques for generating uniform pseudorandom numbers. Stochastic simulations typically transform such numbers to generate variates according to more complex distributions [13, 25]. Here, “uniform pseudorandom” means that the numbers behave from the outside as if they were the values of i.i.d. random variables, uniformly distributed over some finite set of symbols. This set of symbols is often a set of integers of the form {0, . . . , m - 1} and the symbols are usually transformed by some function into values between 0 and 1, to approximate the U(0, 1) distribution. Other tutorial-like references on uniform variate generation include [13, 23, 52, 54, 65, 84, 89].

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference101 articles.

1. The sub-lattice structure of linear congruential random number generators

2. Calculation of Minkowski-reduced lattice bases

3. The lattice structure of pseudo-random vectors generated by matrix generators

4. Afflerbach L. and Weilbacher R. On Using Discrepancy for the Assessment of Pseudorandom Num-ber Generators. Submitted for publication 1988.]] Afflerbach L. and Weilbacher R. On Using Discrepancy for the Assessment of Pseudorandom Num-ber Generators. Submitted for publication 1988.]]

5. The exact determination of rectangle discrepancy for linear congruential pseudorandom numbers

Cited by 166 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Batched ranged random integer generation;Software: Practice and Experience;2024-08-25

2. Quantile mortality modelling of multiple populations via neural networks;Insurance: Mathematics and Economics;2024-05

3. Analysis of pseudo-random number generators in QMC-SSE method;Chinese Physics B;2024-03-01

4. Temporally Non-Uniform Cellular Automata as Pseudo-random Number Generator;Communications in Computer and Information Science;2024

5. True Random Number Generator Implemented in ReRAM Crossbar Based on Static Stochasticity of ReRAMs;2023 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS);2023-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3