FAWN

Author:

Andersen David G.1,Franklin Jason1,Kaminsky Michael2,Phanishayee Amar1,Tan Lawrence1,Vasudevan Vijay1

Affiliation:

1. Carnegie Mellon University

2. Intel Labs

Abstract

This paper presents a fast array of wimpy nodes---FAWN---an approach for achieving low-power data-intensive data-center computing. FAWN couples low-power processors to small amounts of local flash storage, balancing computation and I/O capabilities. FAWN optimizes for per node energy efficiency to enable efficient, massively parallel access to data. The key contributions of this paper are the principles of the FAWN approach and the design and implementation of FAWN-KV---a consistent, replicated, highly available, and high-performance key-value storage system built on a FAWN prototype. Our design centers around purely log-structured datastores that provide the basis for high performance on flash storage, as well as for replication and consistency obtained using chain replication on a consistent hashing ring. Our evaluation demonstrates that FAWN clusters can handle roughly 350 key-value queries per Joule of energy---two orders of magnitude more than a disk-based system.

Funder

Division of Computing and Communication Foundations

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference21 articles.

1. FAWN

2. The Case for Energy-Proportional Computing

3. Memory-only or flash configurations. http://www.oracle.com/technology/documentation/berkeley-db/db/ref/program/ram.html Memory-only or flash configurations. http://www.oracle.com/technology/documentation/berkeley-db/db/ref/program/ram.html

4. Gordon

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DistMind: Efficient Resource Disaggregation for Deep Learning Workloads;IEEE/ACM Transactions on Networking;2024-06

2. FenceKV: Enabling Efficient Range Query for Key-Value Separation;IEEE Transactions on Parallel and Distributed Systems;2022-12-01

3. Bibliography;Storage Systems;2022

4. Database parallelism, big data and analytics, deep learning;Storage Systems;2022

5. Adaptive Lower-level Driven Compaction to Optimize LSM-Tree Key-Value Stores;IEEE Transactions on Knowledge and Data Engineering;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3