Symbolic computation of Fenchel conjugates

Author:

Bauschke Heinz H.1,Mohrenschildt Martin v.2

Affiliation:

1. Irving K. Barber School, UBC Okanagan, Canada

2. McMaster University, Hamilton, Ontario, Canada

Abstract

Convex optimization deals with certain classes of mathematical optimization problems including least-squares and linear programming problems. This area has recently been the focus of considerable study and interest due to the facts that convex optimization problems can be solved efficiently by interior-point methods and that convex optimization problems are actually much more prevalent in practice that previously thought.Key notions in convex optimization are the Fenchel conjugate and the subdifferential of a convex function. In this paper, we build a new bridge between convex optimization and symbolic mathematics by describing the Maple package fenchel, which allows for the symbolic computation of these objects for numerous convex functions defined on the real line. We are able to symbolically reproduce computations for finding Fenchel conjugates and subdifferentials for numerous nontrivial examples found in the literature.

Publisher

Association for Computing Machinery (ACM)

Reference19 articles.

1. Legendre functions and the method of random Bregman projections;Bauschke H. H.;Journal of Convex Analysis,1997

2. D. P. Bertsekas. Nonlinear Programming. Athena Scientific 1995. D. P. Bertsekas. Nonlinear Programming . Athena Scientific 1995.

3. Convex Analysis and Nonlinear Optimization

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Symbolic computation with monotone operators;ACM Communications in Computer Algebra;2019-05-30

2. Computation of the Epsilon-Subdifferential of Convex Piecewise Linear-Quadratic Functions in Optimal Worst-Case Time;Set-Valued and Variational Analysis;2018-03-09

3. Symbolic Computation with Monotone Operators;Set-Valued and Variational Analysis;2017-05-19

4. Computing the conjugate of convex piecewise linear-quadratic bivariate functions;Mathematical Programming;2013-03-22

5. Bibliography;Modeling and Convexity;2013-03-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3