PLDS

Author:

Feng Min1,Lin Changhui1,Gupta Rajiv1

Affiliation:

1. University of California, Riverside, CA

Abstract

Recently, parallelization of computations in the presence of dynamic data structures has shown promising potential. In this paper, we present PLDS, a system for easily expressing and efficiently exploiting parallelism in computations that are based on dynamic linked data structures. PLDS improves the execution efficiency by providing support for data partitioning and then distributing computation across threads based on the partitioning. Such computations often require the use of speculation to exploit dynamic parallelism. PLDS supports a conditional speculation mechanism that reduces the cost of speculation. PLDS can be employed in the context of different forms of parallelism, which to cover a wide range of parallel applications. PLDS provides easy-to-use compiler directives, using enabling programmers to choose from among a variety of data partitionings to distribute computation across threads in a partitioning-sensitive fashion, and to use conditional speculation when required. We evaluate our implementation of PLDS using ten benchmarks, of which six are parallelized using speculation. PLDS achieves 1.3x--6.9x speedups on an 8-core machine.

Funder

Division of Computing and Communication Foundations

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Treelet Prefetching For Ray Tracing;56th Annual IEEE/ACM International Symposium on Microarchitecture;2023-10-28

2. Loop Parallelization using Dynamic Commutativity Analysis;2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO);2021-02-27

3. A Survey on Thread-Level Speculation Techniques;ACM Computing Surveys;2016-11-11

4. Fast Compression of Large Semantic Web Data Using X10;IEEE Transactions on Parallel and Distributed Systems;2016-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3