Optimizing multidimensional index trees for main memory access

Author:

Kim Kihong1,Cha Sang K.1,Kwon Keunjoo1

Affiliation:

1. School of Electrical Engineering and Computer Science, Seoul National University

Abstract

Recent studies have shown that cache-conscious indexes such as the CSB+-tree outperform conventional main memory indexes such as the T-tree. The key idea of these cache-conscious indexes is to eliminate most of child pointers from a node to increase the fanout of the tree. When the node size is chosen in the order of the cache block size, this pointer elimination effectively reduces the tree height, and thus improves the cache behavior of the index. However, the pointer elimination cannot be directly applied to multidimensional index structures such as the R-tree, where the size of a key, typically, an MBR (minimum bounding rectangle), is much larger than that of a pointer. Simple elimination of four-byte pointers does not help much to pack more entries in a node. This paper proposes a cache-conscious version of the R-tree called the CR-tree. To pack more entries in a node, the CR-tree compresses MBR keys, which occupy almost 80% of index data in the two-dimensional case. It first represents the coordinates of an MBR key relatively to the lower left corner of its parent MBR to eliminate the leading O's from the relative coordinate representation. Then, it quantizes the relative coordinates with a fixed number of bits to further cut off the trailing less significant bits. Consequently, the CR-tree becomes significantly wider and smaller than the ordinary R-tree. Our experimental and analytical study shows that the two-dimensional CR-tree performs search up to 2.5 times faster than the ordinary R-tree while maintaining similar update performance and consuming about 60% less memory space.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey of Multi-Dimensional Indexes: Past and Future Trends;IEEE Transactions on Knowledge and Data Engineering;2024-08

2. Three-dimensional Geospatial Interlinking with JedAI-spatial;Journal of Web Semantics;2024-07

3. G-Learned Index: Enabling Efficient Learned Index on GPU;IEEE Transactions on Parallel and Distributed Systems;2024-06

4. Label Space Partition Selection for Multi-Object Tracking Using Two-Layer Partitioning;2023 12th International Conference on Control, Automation and Information Sciences (ICCAIS);2023-11-27

5. SIMD-ified R-tree Query Processing and Optimization;Proceedings of the 31st ACM International Conference on Advances in Geographic Information Systems;2023-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3