Query optimization in compressed database systems

Author:

Chen Zhiyuan1,Gehrke Johannes1,Korn Flip2

Affiliation:

1. Cornell University

2. AT&T Labs-Research

Abstract

Over the last decades, improvements in CPU speed have outpaced improvements in main memory and disk access rates by orders of magnitude, enabling the use of data compression techniques to improve the performance of database systems. Previous work describes the benefits of compression for numerical attributes, where data is stored in compressed format on disk. Despite the abundance of string-valued attributes in relational schemas there is little work on compression for string attributes in a database context. Moreover, none of the previous work suitably addresses the role of the query optimizer: During query execution, data is either eagerly decompressed when it is read into main memory, or data lazily stays compressed in main memory and is decompressed on demand only In this paper, we present an effective approach for database compression based on lightweight, attribute-level compression techniques. We propose a IIierarchical Dictionary Encoding strategy that intelligently selects the most effective compression method for string-valued attributes. We show that eager and lazy decompression strategies produce sub-optimal plans for queries involving compressed string attributes. We then formalize the problem of compression-aware query optimization and propose one provably optimal and two fast heuristic algorithms for selecting a query plan for relational schemas with compressed attributes; our algorithms can easily be integrated into existing cost-based query optimizers. Experiments using TPC-H data demonstrate the impact of our string compression methods and show the importance of compression-aware query optimization. Our approach results in up to an order speed up over existing approaches.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Reference33 articles.

1. Transact on processing performance council TPC-H benchmark http://www.tpc.org 1999. Transact on processing performance council TPC-H benchmark http://www.tpc.org 1999.

2. Predator DMBS. http://www.cs.cornel l.edu/database/predator Cornel l Univ. Computer Science Dept. 2000. Predator DMBS. http://www.cs.cornel l.edu/database/predator Cornel l Univ. Computer Science Dept. 2000.

3. S.Amer-Yahia and T.Johnson.Optimizing queres on compressed b tmaps.In Proc.of VLDB pages 329 -338 2000. S.Amer-Yahia and T.Johnson.Optimizing queres on compressed b tmaps.In Proc.of VLDB pages 329 -338 2000.

4. G.Antoshenkov D.B.Lomet and J.Murray.Order preserving compression.In Proc.of ICDE pages 655 -663 1996. G.Antoshenkov D.B.Lomet and J.Murray.Order preserving compression.In Proc.of ICDE pages 655 -663 1996.

5. C.Blake and C.Merz.UCI repository of machine learning databases. http://www.ics.uci.edu/~mlearn/MLRepository.html 1998. C.Blake and C.Merz.UCI repository of machine learning databases. http://www.ics.uci.edu/~mlearn/MLRepository.html 1998.

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Revisiting B-tree Compression: An Experimental Study;Proceedings of the ACM on Management of Data;2024-05-29

2. Toward Quantity-of-Interest Preserving Lossy Compression for Scientific Data;Proceedings of the VLDB Endowment;2022-12

3. Highly Efficient String Similarity Search and Join over Compressed Indexes;2022 IEEE 38th International Conference on Data Engineering (ICDE);2022-05

4. Improving Relational Database Upon the Arrival of Storage Hardware with Built-in Transparent Compression;2021 IEEE International Conference on Networking, Architecture and Storage (NAS);2021-10

5. Good to the Last Bit: Data-Driven Encoding with CodecDB;Proceedings of the 2021 International Conference on Management of Data;2021-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3